Главная Контакты Магазин Минское ш. Доставка Монтаж Интерьеры саун
Статьи:
Строительство бани
Справочная информация
Отопление
Cамая актуальная информация о последних тенденциях отопительного оборудования.
Монтаж
Монтаж дымохода, печей, бани, сауны, камина
Новости
Cамая актуальная информация о последних тенденциях банного и отопительного оборудования.
НОВОСТИ
17.11.2017
Новинка! Печка с закрытой каменкой от Greivari.
Новинка от 2017 года Печь Кирасир 15 Atmos Intro. Вариант печи с каминной дверцей и закрытым отсеком для камней. Гарантия производителя 60 месяцев.
31.05.2016
Житель Белоруссии построил дом с нулевым энергопотреблением.
В Белорусском селе житель построил «Дом будущего», в котором не надо платить за коммунальные услуги. Здание из сухой травы совершенно не боится непогоды. Внутри дома будет баня и специальная печь с камином. На стене хозяин оставил неоштукатуренные островки. Окна гласности, как он их называет. Фундамент дома сделан из бутылок. Бутылки как кирпичи уложены на раствор. Получилась очень прочная конструкция, которая сохраняет тепло и не пропускает влагу. 
21.03.2015
Новости от Термофор - изменение названия банных печей.
В связи с существенным расширением предложения от Термофор, в компании принято решение о упорядочении смыслового названия банных печей.
С 2015 года при использовании в названии слова Inox подразумевается, что модель печи выполнена с топочной частью из высоколегированной хромистой стали "нержавейки".
Если в названии указано — Carbon, то печь имеет топку из конструкционной стали "черной".
12.12.2014
Новинка! Печь Варвара Терма - "Сказка"
Печь Варвара Терма - "Сказка" Печь с закрытой каменкой облицованная плитами из талькохлорита.
12.12.2014
Новинка! Печь "Домовой-Эконом"
Простой, компактный и легкий, но дающий много тепла! Пригодится и в теплице и на даче, и в доме и в гараже! Да, плюс ко всему на нем еще можно приготовить пищу! Все это «Домовой» - маленькая печь буржуйка с конвекцией и варочной панелью! За имением малых габаритов несет в себе мощность в 5 кВТ, что дает ей возможность мягко прогреть помещение в 50-60 м3. Цена от 4 750 руб.
11.04.2014
Строительство саун и бань по низким ценам.
Профессиональный подход, более чем 15 летний опыт.

Строительство бань и саун
Монтаж дымоходов
(917) 591-88-95
(926) 232-45-85

Электрическое отопление.

07 Октября 2012

При электрическом отоплении получение теплоты связано с преобразованием электрической энергии. По способу получения теплоты электрическое отопление может быть с прямым преобразованием электрической энергии в тепловую и с трансформацией электричества в теплоту в тепловых насосах. Системы электрического отопления подразделяются на местные, когда электроэнергия преобразуется в тепловую в обогреваемых помещениях или в непосредственной близости от них, и центральные, например, с электрокотлами.


По степени использования электроэнергии для отопления различают системы с полным покрытием отопительной нагрузки и с частичным ее покрытием (комбинированное отопление) в качестве как фоновой (базисной), так и догревающей частей системы.

Системы электрического отопления могут работать по свободному и вынужденному (например, только ночью) графикам.

Достоинствами систем электрического отопления являются высокие гигиенические показатели, малый расход металла, простота монтажа при сравнительно небольших капитальных вложениях, транспортабельность, управляемость в широких пределах с автоматизацией регулирования. Возможность гибкого управления процессом получения теплоты позволяет создавать системы отопления, быстро реагирующие на изменение теплопотребности помещений.

К недостаткам электрического отопления относят, в первую очередь, неэкономичное использование топлива, высокую температуру греющих элементов, повышенную пожарную опасность, хотя в последние годы у применяемых отопительных приборов и греющих кабелей значительно снижена опасность возгорания. Распространение электрического отопления в стране сдерживается также ограниченным уровнем выработки электроэнергии. Отпускная стоимость энергии высокая из-за значительных капитальных вложений в электростанции и линии передач, потерь при транспортировании.

Полное электроотопление зданий требует значительного расхода электроэнергии. Годовой расход электроэнергии для отопления 100 м2 площади гражданского здания постройки до 90-х годов колеблется от 35 на юге страны до 125 гДж на севере.

Для уменьшения расхода топлива целесообразно применять отопительные установки с использованием тепловых насосов. Так, коэффициент использования топлива при отпуске теплоты потребителю у различных источников теплоснабжения меняется в следующих пределах: от тэц 68…75 %, от котельных мощностью более 60 мвт 66…73 %, от котельных мощностью менее 60 мвт 58…70 %, от автономных котлов отечественных 65…75 %, от автономных котлов импортных 85…99 %, при электрическом отоплении с приборами прямого преобразования в теплоту 25…45 %, при электрическом отоплении с тепловыми насосами 65…75 %. То есть тепловые насосы имеют приблизительно такой же коэффициент использования топлива как отопление от ТЭЦ или отечественных автономных котельных.

Целесообразность применения электрического отопления в конкретном случае определяют путем сравнения технико-экономических показателей различных вариантов отопления здания. При сравнении исходят из стоимости топлива или электроэнергии с учетом их транспортирования и потерь при этом, коэффициента использования топлива, стоимости сооружения и эксплуатации систем отопления и теплоснабжения. Принимают также во внимание возможность регулирования теплоотдачи приборов и понижения температуры помещения в нерабочее время. Оценивают улучшение социально-гигиенических условий при применении электроотопления. Высокая транспортабельность создает условия для использования электрической энергии в системах отопления зданий и сооружений в труд­нодоступных районах, не имеющих других источников теплоты, а отсутствие продуктов сгорания — в экологически чистых зонах. В современных условиях применение электрического отопления экономически целесообразно в районах расположения крупных гидростанций, а также при отсутствии местного топлива (отдаленные районы восточной сибири, крайнего севера). Используется электроэнергия для отопления рассредоточенных потребителей сельских районов страны.

В современных условиях сниженного потребления электроэнергии промышленностью электроотопление довольно часто применяется в городских зданиях для дополнительного отопления в межсезонье и при отсутствии газовых сетей в загородных коттеджах в качестве единственного источника теплоты.

Большое распространение получили электрические воздушно-тепловые завесы в общественных зданиях.

Электрические отопительные приборы

 

Электрические приборы с прямым преобразованием электрической энергии в тепловую, как и обычные отопительные приборы, подразделяют по преобладающему способу теплоотдачи на радиационные, конвективные и радиационно-конвективные. При температуре греющей поверхности ниже 70 °С их относят к низкотемпературным, выше 100 °С — к высокотемпературным .

Электроотопительные приборы могут быть стационарными и переносными (напольными, настольными, настенными, потолочными); безынерционными и с аккумуляцией теплоты; нерегулируемыми и со ступенчатым, бесступенчатым и автоматическим регулированием. В зависимости от конструкции электрические отопительные приборы называют электро­конвекторами, электрокалориферами, электротепловентиляторами. Выпускают также электрические печи, электрические воздушно-тепловые завесы, подвесные панели, греющие обои, панели с греющим кабелем.

РИСУНОК 110 226x300 Электрическое отопление

Рисунок 1. Кабели для электрического отопления пола: А — кабель ТЛЭ; Б — саморегулирующиеся кабели FSLе(1) и FSS(2); В — двужильный резисторный кабель; Г-двухпроводниковый бронированный кабель; Д — однопроводниковый бронированный кабель; Е — кабель ЕСО; I — оболочка; 2 — оплетка из медной проволоки; 3 — изоляция (термостойкий полимер); 4 — второй слой изоляции; 5 — токонесущие жилы; 6 — матрица токонесущих жил; 7- оболочка из фторполимера.

Панели электрического отопления с греющим кабелем делают совмещенными со строительными конструкциями и приставными к ним.

По принципу тепловыделения нагревательные кабели, используемые в панельном отоплении, относятся к резистивным. У резистивных кабелей теплота выделяется нагревательной жилой, окруженной изоляцией, экранами и защитными оболочками. Они могут запитываться с двух или одного конца (двухжильные кабели). Преимуществами таких кабелей является простота конструкции, высокая технологичность (монтаж нагревательных секций на объекте занимает мало времени и несложен) и относительно низкая стоимость. Недостатком является необходимость использования секций строго заданной длины.

Исполнение нагревательных кабелей (рисунок 1) отличается наличием или отсутствием, а также материалом изоляции, защитного экрана и наружной оболочки. Исполнение кабеля определяет уровень защищенности кабеля от влияния окружающей среды и его рабочую температуру. Кабели, применяемые для панельного отопления, считаются низкотемпературными, так как температура греющей жилы в них не превышает 100 °С.

Нагревательная жила в зависимости от требуемого электрического сопротивления, состоящая из одной или нескольких проволок, изготавливается из специальных сплавов, оцинкованной стали, латуни, меди, алюминия. Электрическое сопротивление современных кабелей, использующихся в панельном отоплении, лежит в пределах 0,041…20 Ом/м. Обычно кабель имеет поверх нагревательной жилы один или два слоя изоляции из пластика, защитный экран в виде оплетки из медной проволоки сечением 1 мм2 и наружную оболочку из поливинилхлоридного пластика или полиэтилена. Сопротивление изоляции приблизительно равно 1х105 Ом/м. Для усиления механической защиты и снижения генерируемых электромагнитных полей применяется так называемый бронированный кабель, у которого оплетка выполнена из отожженной медной проволоки. Защитный экран кабелей должен быть подключен к заземляющему контуру здания (или к нулевому проводу). Одножильные кабели бывают круглыми диаметром от 5 до 7 мм, а двухжильные, как правило, овальными размерами около 5,3х7,6 мм.

Современные греющие кабели имеют токопроводящую жилу, выполненную из материалов, обладающих низким температурным коэффициентом сопротивления, что значительно упрощает тепловые расчеты. В настоящее время разработана принципиально новая конструкция кабеля, теплоотдача которого определяется только напряжением питания. В этих саморегулирующихся кабелях теплота выделяется в полупроводящей пластмассе, заполняющей пространство между двумя токопроводящими жилами (рисунок 1).

При повышении температуры сопротивление пластмассы возрастает и тепловыделение падает, благодаря чему создается эффект саморегулирования. Конструкция окружена электроизолирующими и защитными оболочками и экранами и запитывается с одного конца. Большим преимуществом такого кабеля является возможность использования произвольными длинами, отрезаемыми по месту. При таких кабелях необходимая плотность теплового потока будет достигаться варьированием шага их раскладки. Саморегулирующиеся кабели не перегреваются и не перегорают. Недостатком кабеля следует считать большой стартовый ток, превышающий номинальный в 1,5…2 раза. Кроме того, к недостаткам относят невозможность обеспечить форсированный обогрев. Саморегулирующийся кабель довольно дорог. Но при серийном производстве цена возможно будет снижена.

Резистивные кабели имеют линейную мощность от 15 до 25 Вт/м. Рекомендуется устройство шага раскладки кабеля с таким расчетом, чтобы поверхностная мощность системы не превышала 150 Вт/м2 у малоинерционных панелей и 200 Вт/м2 у аккумулирующих теплоту. Шаг раскладки кабеля должен лежать в пределах 10…20 см. При этом, как правило, допускается минимальный радиус изгиба кабеля 150 мм. Нагревательные секции при изменении длины от 5 до 125 м увеличивают свою мощность приблизительно от 100 до 2500 Вт. Появились секции греющего кабеля, закрепленные на пластиковой сетке. Плоскостные секции на сетке выполняются различной длины шириной 0,5 м.

Сейчас наибольшее распространение получили напольные системы электроотопления, при которых кабель или провод закладывается в междуэтажное перекрытие. На рисунке 2 показаны варианты такой конструкции.

Принцип электрического обогрева полов

Принцип электрического обогрева полов представляет собой систему, в которой нагревательный кабель, залитый в толщу цементной стяжки, нагревает пол до требуемой (22 — 30°С) температуры, датчик температуры пола контролирует ее величину, а регулятор по сигналу датчика включает или отключает нагрев (рисунок 3). При расчете электрического отопления вы­бираемая мощность отопительного оборудованы должна соответствовать тепловым потерям помещения и, в конечном счете, зависит от качества строительства и выбора теплоизоляционных материалов.

 

РИСУНОК 26 300x197 Электрическое отопление

Рисунок 2. Греющий кабель в перекрытиях зданий: а — замоноличенный; б — в воздушной прослойке; в — замоноличенный под воздушной прослойкой; 1 — покрытие пола; 2 — стяжка толщиной 20…30 мм; 3 — монолитный слой толщиной 40…50 мм; 4 — греющий кабель; 5 -звукотеплоизоляция; 6 — несущая железобетонная плита; 7 — воздушная прослойка толщиной 40…50 мм; 8 — лага 50×50 мм; 9 — настил пола толщиной 20 мм; 10 — монолитный слой толщиной 20 мм; 11 — воздушная прослойка толщиной 30 мм.

 

В зданиях с бетонными перекрытиями применяют замоноличивание греющего кабеля в конструкцию пола (рисунке 1, а). Термическое сопротивление слоев, расположенных между кабелем и покрытием пола, принимают и пределах 0,045…0,2 м -°С/Вт.

В зданиях с полами на лагах греющий кабель располагают в воздушной прослойке (рисунок 1, б) для выравнивания температуры поверхности пола. При этом менее вероятно местное перегревание кабеля. Его укладывают на металлическую сетку таким образом, чтобы он не касался утеплителя, так как в противном случае может произойти перегрев кабеля или изоляции.

Для интенсификации конвективного теплообмена в воздушной прослойке в углах помещения оставляют вентиляционные отверстия, перекрытые решетками. Недостатком конструкции является перерасход кабеля из-за уменьшения его теплоотдачи.

РИСУНОК 35 300x209 Электрическое отопление

Рисунок 3. Схема электрического обогрева: 1 — перекрытие; 2 — теплоизоляция; 3 — датчик температуры; 4 — нагревательный кабель; 5 — бетонная стяжка; 6 — напольное покрытие; 7 — несущая стена.

 

В зданиях с полами на лагах применяют также замоноличивание кабеля и устройство воздушной прослойки над замоноличивающим слоем (рисунок 1, в). Такая конструкция совмещает в себе преимущества первых двух: увеличенную теплоотдачу и предотвращение местного перегревания кабеля.

Регулирование теплоотдачи панели электрического отопления выполняют двухпозиционно.

 

Подвесные электропанели

 

Для отопления производственных помещений большого объема применяют подвесные электропанели. Тепловую мощность подвесных панелей рассчитывают по балансам теплоты в верхней (над панелью) и нижней (под панелью) частях помещения. При этом считают, что теплопотери верхней зоны компенсируются теплоотдачей панели вверх, а теплопотери нижней зоны — теплоотдачей вниз. На рисунке 4 дана схема конструкции подвесной панели. При изолированном кабеле плотность теплового потока в них составляет около 460 Вт/м (теплоотдача вниз 85 %), при неизолированном кабеле — около 840 Вт/м (теплоотдача вниз около 88 %).

 РИСУНОК 45 300x104 Электрическое отопление

Рисунок 4. Подвесная панель с греющим электрокабелем: 1 — стальной кожух; 2 — теплоизоляция; 3 — нагреватель в виде изолированного кабеля.

 РИСУНОК 53 300x81 Электрическое отопление

Рисунок 5. Электронагревательная печь (боковой вид): 1 — трубчатые электронагреватели; 2- стальной кожух; 3 — крышки; 4 — контакт заземления; 5 — перемычки; 6 — токоведущие шпильки; 7 — дно; 8 — отверстие для ввода электропитания.

 

Электронагревательные печи

 

Для отопления отдельных помещений используют электронагревательные печи ПЭТ (рисунок 5). В печи под перфорированным кожухом помещены на фарфоровых колодках трубчатые электронагревательные элементы (ТЭН) мощностью 0,5…1 кВт. Температура поверхности тэн на 130..150 °С выше температуры окружающего воздуха. При монтаже печи как в горизонтальном, так и вертикальном положении (с электропитанием снизу) к болту заземления присоединяют заземляющий провод.

Переносные электроотопительные приборы применяют для дополнительного отопления жилых и общественных зданий, садовых домиков.

Распространенным электроотопительным прибором является электрокамин, который по исполнению может быть настенным, напольным, универсальным. Нагревательные элементы бывают сосредоточенными или линейными с температурой 750…800 °С.

РИСУНОК 63 235x300 Электрическое отопление

Рисунок 6. Электрокамин со сферическим отражателем: 1 — декоративная защитная решетка; 2 — нагревательный элемент; 3 — отражатель; 4 — патрон; 5 — шнур электропитания; 6 -кронштейн; 7 — поворотный винт; 8 — подставка.

РИСУНОК 72 300x157 Электрическое отопление

Рисунок 7. Декоративно-функциональный электрокамин: а — вид спереди; б — вид сбоку; 1 -декоративный внешний корпус; 2 — внутренний металлический корпус; 3 — панель имитации топлива; 4 — декоративно-защитная решетка; 5 — полупрозрачный экран; 6 — вертушка; 7 — кронштейн с иглой; 8 — красная лампа; 9 — отражатель; 10 — патрон; 11 — нагревательные элементы.

Выпускают электрокамины чисто функциональные, предназначенные только для отопления, и декоративно-функциональные, являющиеся, кроме  того, частью интерьера. На рисунке 6 показана конструкция функционального электрокамина со сферическим отражателем. Для изменения направления радиационного теплового потока отражатель может поворачиваться. В декоративно-функциональном электрокамине (рисунок 7) имитируется горение дров. Теплый воздух вращает вертушку с прорезями, и на панель и экран падают блики света от красной лампы.

 

Электрорадиаторы

 

Электрорадиаторы делают напольными (с промежуточным теплоносителем — минеральным маслом) мощностью 0,5…3 кВт. Они бывают панельными (рисунок 8) и секционными, когда корпус собирается из отдельных секций, сваренных между собой.

 РИСУНОК 82 300x261 Электрическое отопление

Рисунок 8 Панельный электрорадиатор: 1 — герметичный корпус, заполненный маслом; 2 -регулятор температуры; 3 — шнур электропитания; 4 — электронагреватель.

 

Теплоотдача электрорадиатора излучением составляет 50 % общего теплового потока. Максимальная температура поверхности радиатора достигает 110 °С, а средняя — 85…95 °С. Электрорадиаторы, как правило, имеют термоограничитель, отключающий прибор при достижении температуры 130 °С на корпусе. Выносной терморегулятор, которым укомплектовано большинство электрорадиаторов, позволяет поддерживать необходимую температуру в обогреваемом помещении.

РИСУНОК 92 300x293 Электрическое отопление

Рисунок 9. Электроконвектор: 1 — корпус; 2 — нагревательный элемент в виде стальных пластин; 3 — выключатели; 4 — шнур электропитания.

 

Электроконвекторы

 

В электроконвекторах теплоотдача осуществляется преимущественно (90 %) естественной конвекцией. Наиболее распространенной является напольная модель (рисунок 9).

РИСУНОК 102 Электрическое отопление

Рисунок 10. Установка злектроконвектора с выносным термостатом: 1 — электроконвектор; 2 — электропроводка; 3 — проводка соединения с термостатом; 4 — термостат; 5 — подоконник; 6 — окно; 7 — линия пола.

 

Электроконвектор мощностью 0,5…3 кВт представляет собой корпус, внутри которого расположены нагревательные элементы — спираль из сплава высокого сопротивления (как правило, нихрома) или трубчатый электронагреватель. Температура открытой спирали 600…900 °С, трубчатого нагревателя — 450…500 °С. Температура выходящего из конвектора воздуха не превышает температуры окружающего воздуха более чем на 85 °С. Новые конструкции конвекторов оснащают терморегуляторами (рисунок 10).

РИСУНОК 113 300x188 Электрическое отопление

Рисунок 11. Воздушно — отопительный агрегат типа АО2: 1- осевой вентилятор с электродвигателем; 2- воздухонагреватель (калорифер); 3- многостворчатый клапан; 4- кронштейны.

 

Электротепловентилятор

 

Электротепловентилятор — отопительный прибор с теплоотдачей при вынужденной конвекции, создаваемой встроенным вентилятором (рисунок 11). Мощность прибора доходит до 9 кВт, поэтому тепловентилятор иногда называют тепловой пушкой, выбрасывающей мощную тепловую струю.

Нагревательные элементы в электротепловентиляторах такие же, как в электроконвекторах. Приборы имеют ступени регулирования мощности и, как правило, две частоты вращения вентилятора. Для защиты от перегрева в цепь нагревательных элементов включают термоограничитель.

Выпускают также комбинированные электроприборы: электрокамины-конвекторы и электрокамины-радиаторы.

Электрическое аккумуляционное отопление

 

Электротеплоаккумулирующие приборы потребляют электроэнергию только в периоды снижения других электрических нагрузок. Такие приборы, выравнивающие суточное потребление электроэнергии, повышают эффективность работы энергосистем. В настоящее время региональные энергетические комиссии пытаются решить проблему выравнивания нагрузок на энергосистему введением дифференцированных по времени суток тарифов. Низкий тариф действует с 23.00 до 7.00 часов, а в остальное время — обычный. Разница в тарифах составляет от 2,5 до 8 раз в зависимости от группы потребителей и региона, в котором они находятся.

Общий суточный цикл работы электротеплоаккумулирующего прибора включает в себя период «зарядки» (обычно ночной), в течение которого нагревательные элементы подключены к электрической сети, и период «разрядки», когда нагревательные элементы от сети отключены.

Наибольшее распространение получили теплоаккумулирующие печи. Для аккумуляции теплоты в печах имеется сердечник из теплоемкого, теплопроводного, взрывобезопасного дешевого материала без запаха. Эффективным материалом считается магнезит.

В бытовых электротеплоаккумулирующих печах температура сердечника не превышает 600 °С. Для увеличения продолжительности разряда и ограничения температуры кожуха 100 °С применяют тепловую изоляцию сердечника.

РИСУНОК 122 300x162 Электрическое отопление

Рисунок 12. Электрические теплоаккумуляционные печи: а — нерегулируемая печь; б — аккумулирующий конвектор; в — динамический теплоаккумулятор; 1 — нагревательные элементы; 2 — теплоаккумулирующий слой; 3 — теплоизоляция; 4 — воздушный канал; 5 — клапан; б — решетка; 7 — байпасные воздушные клапаны; 8 — вентилятор.

Электротеплоаккумулирующие печи с твердым теплоаккумулирующим материалом подразделяют на три типа (рисунок 12):

- Нерегулируемые (рисунок 12, а) — наиболее простые и дешевые. При их применении возникают наибольшие колебания температуры помещения. Теплоту они отдают за счет излучения и конвекции примерно в равных долях;

- Аккумулирующие конвекторы (рисунок 12, б). Внутренний конвективный канал и регулирующий клапан позволяют поддерживать более ровную температуру помещения в течение суток;

- Динамические теплоаккумуляторы (рисунок 12, в) — наиболее совершенные, со встроенным двухскоростным вентилятором и регулирующим клапаном. Основной способ теплоотдачи — вынужденная конвекция. Высокотемпературный воздух, прошедший через п-образный канал, смешивается с воздухом помещения, что обеспечивает допустимую (обычно 40…50 °С) температуру на выходе из решетки. Сигнална включение и выключение вентилятора поступает от датчика температуры, устанавливаемого в помещении.

В настоящее время в россии выпускаются печи третьего типа мощно­стью от 2 до 7,5 кВт; рассчитанные на 8 ч зарядки.

На рисунке 13 показана схема у правления системой электроаккумуляционного отопления одноквартирного дома с зарядкой приборов в ночное время, продолжительность которой регулируется в зависимости от температуры наружного воздуха и остаточной теплоты в приборах.

РИСУНОК 132 Электрическое отопление

Рисунок 13. Электротеплоаккумуляционная система отопления одноквартирного дома: 1-датчик температуры наружного воздуха; 2-электрокабель; 3-электротеплоаккумуляционный отопительный прибор; 4-датчик температуры внутреннего воздуха; 5-кабель управления; 6 — блок автоматического регулирования; 7 — трехфазный электроввод.

 

В южных районах страны электротеплоаккумуляционное отопление может быть обеспечено применением не только печей, но и панелей с греющим электрическим кабелем.

При повышении мощности электроаккумулирующих приборов соответственно увеличивают площадь поперечного сечения проводов ввода и внутри домовой электрической сети.

 

Инфракрасные обогреватели

&







Возникли вопросы?

Наши специалисты будут рады проконсультировать Вас:

(963) 659-41-41
(495) 785-67-38

info@sauna-expert.ru

Яндекс.Метрика ® « 2019 - СаунаЭксперт.РФ »